Congruences for the number ofk-tuple partitions with distinct even parts
نویسندگان
چکیده
منابع مشابه
Congruences for the number of partitions and bipartitions with distinct even parts
Abstract Let ped(n) denote the number of partitions of n wherein even parts are distinct (and odd parts are unrestricted). We show infinite families of congruences for ped(n) modulo 8. We also examine the behavior of ped−2(n) modulo 8 in detail where ped−2(n) denotes the number of bipartitions of n with even parts distinct. As a result, we find infinite families of congruences for ped2(n) modul...
متن کاملNew Infinite Families of Congruences Modulo 8 for Partitions with Even Parts Distinct
Let ped(n) denote the number of partitions of an integer n wherein even parts are distinct. Recently, Andrews, Hirschhorn and Sellers, Chen, and Cui and Gu have derived a number of interesting congruences modulo 2, 3 and 4 for ped(n). In this paper we prove several new infinite families of congruences modulo 8 for ped(n). For example, we prove that for α > 0 and n > 0, ped ( 3n+ 11× 34α+3 − 1 8...
متن کاملNew Congruences for Partitions where the Odd Parts are Distinct
Let pod(n) denote the number of partitions of n wherein odd parts are distinct (and even parts are unrestricted). We find some new interesting congruences for pod(n) modulo 3, 5 and 9.
متن کاملArithmetic properties of partitions with even parts distinct
In this work, we consider the function ped(n), the number of partitions of an integer n wherein the even parts are distinct (and the odd parts are unrestricted). Our goal is to consider this function from an arithmetical point of view in the spirit of Ramanujan’s congruences for the unrestricted partition function p(n). We prove a number of results for ped(n) including the following: For all n≥...
متن کاملIdentities Relating the Number of Partitions into an Even and Odd Number of Parts
If / > 0 and n > 1, let qf (n) denote the number of partitions of/? into an even number of parts, where each part occurs at most / times and Set qf(n) denote the number of partitions of n into an odd number of parts, where each part occurs at most/times. \ii>0, \etqf(0)= 1 andqf(0) = 0. For/ >Oandn > 0, \v\Aj(n) = qJ(n)-q°(n). For/= 1, it is well known [1] that , A (n) = I ~ i f n = f ^ orsome ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2013
ISSN: 0012-365X
DOI: 10.1016/j.disc.2013.04.004