Congruences for the number ofk-tuple partitions with distinct even parts

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences for the number of partitions and bipartitions with distinct even parts

Abstract Let ped(n) denote the number of partitions of n wherein even parts are distinct (and odd parts are unrestricted). We show infinite families of congruences for ped(n) modulo 8. We also examine the behavior of ped−2(n) modulo 8 in detail where ped−2(n) denotes the number of bipartitions of n with even parts distinct. As a result, we find infinite families of congruences for ped2(n) modul...

متن کامل

New Infinite Families of Congruences Modulo 8 for Partitions with Even Parts Distinct

Let ped(n) denote the number of partitions of an integer n wherein even parts are distinct. Recently, Andrews, Hirschhorn and Sellers, Chen, and Cui and Gu have derived a number of interesting congruences modulo 2, 3 and 4 for ped(n). In this paper we prove several new infinite families of congruences modulo 8 for ped(n). For example, we prove that for α > 0 and n > 0, ped ( 3n+ 11× 34α+3 − 1 8...

متن کامل

New Congruences for Partitions where the Odd Parts are Distinct

Let pod(n) denote the number of partitions of n wherein odd parts are distinct (and even parts are unrestricted). We find some new interesting congruences for pod(n) modulo 3, 5 and 9.

متن کامل

Arithmetic properties of partitions with even parts distinct

In this work, we consider the function ped(n), the number of partitions of an integer n wherein the even parts are distinct (and the odd parts are unrestricted). Our goal is to consider this function from an arithmetical point of view in the spirit of Ramanujan’s congruences for the unrestricted partition function p(n). We prove a number of results for ped(n) including the following: For all n≥...

متن کامل

Identities Relating the Number of Partitions into an Even and Odd Number of Parts

If / > 0 and n > 1, let qf (n) denote the number of partitions of/? into an even number of parts, where each part occurs at most / times and Set qf(n) denote the number of partitions of n into an odd number of parts, where each part occurs at most/times. \ii>0, \etqf(0)= 1 andqf(0) = 0. For/ >Oandn > 0, \v\Aj(n) = qJ(n)-q°(n). For/= 1, it is well known [1] that , A (n) = I ~ i f n = f ^ orsome ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2013

ISSN: 0012-365X

DOI: 10.1016/j.disc.2013.04.004